MATH TRIGNOMENTARY

                              TRIGNOMENTARY   
                 Trignomentary is area of math where relationship among angle are studied in triangle.
  Relationship among Base, perpendicular and hypotenuse                                                      
                  


Sin A=P/H           ,      cosec A=H/P       since ( sin A=1/cosec A  ,     cosec A=1/sin A)
Cos A=B/H          ,     sec A=H/B           since ( cos A=1/sec A   ,  sec A=1/ cos A)
Tan A=P/B           ,    cot A=B/P            since (tan A=1/cot A  , cot A=1/tan A)

Quadrant System :
           
                   
                       
In above table…

 

 

·                        (90+ A),(90-A)   and  (270-A),(270+A)   Trigonometric function will change, and given below.

·                        (180 +A),(180-A)  and (270+A),(270- A) )   Trigonometric function will remain the same, and is given below.

 

·                        1 st quadrant table ranges [0-90 degree]  in which all Trigonometric function have positive result and their conversion table given below. 
    .i.e                                                                                                                 
                 Sin(90-A)=cos A
                 cos(90-A)=sin A
              
                tan(90-A)=cot A
               cot(90-A)=tan A

               sec(90-A)=cosec A
               cosec(90-A)=    sec A


·                        2 nd quadrant table ranges [90-180 degree] ,in which  only [sin ,cosec ]Trigonometric function have positive result and their conversion table given below. 
          .i.e          
                           Sin(90 +A)= + cos A                                                    Sin(180-A)= +  Sin  A                                                                                                   
                           cos(90+A)= - sin A                                                      cos(180-A)=  -cos A

                       tan(90+A)= - cot A                                                    tan (180-A)= - tan A             
                           cot(90+A)= - tan A                                                      cot(180-A)=  -cot A

                         sec(90+A)= - cosec A                                                  sec(180-A)=  -sec A
                         cosec(90+A)= sec A                                                     cosec (180-A)= cosec A
                 
·                        3 rd quadrant table ranges[180- 270 degree], in which  only [tan,cot ]Trigonometric function have positive result and their conversion table given below. 
          .i.e          

                   Sin(270-A)= - cos                         Sin(180+A)=Sin A                                                                                                   
                           cos(270-A)= - sin A                  cos(180+A)= -cos A

                           tan(270-A)= cot A                      tan (180+A)= tan A             
                           cot(270-A)= tan A                       cot(180+A)= cot A

                         sec(270-A)= - cosec A                   sec(180+A)= -sec A
                         cosec(270-A)= -sec A                    cosec (180+A)= -cosec A
                 
·                        4 th quadrant table ranges[270-360  degree], in which  only [cos,sec, ]Trigonometric function have positive result and their conversion table given below. 
          .i.e          

              Sin(270 +A)= - cos A                             Sin(360-A)= -  Sin  A                                                                                                   
                           cos(270 +A)= sin A                     cos(360-A)= cos A

                           tan(270 +A)= - cot A                   tan (360-A)= - tan A             
                           cot(270 +A)= -tan A                    cot(360-A)= - cot A

                         sec(270 +A)= cosec A                    sec(360-A)= sec A
                         cosec(270 +A)= -sec A                   cosec (360-A)= -cosec A

Angle Value Table :
        
             
                         
Trick to remember::
                     For       sin A     remember any angle value (30,45,60,90 degree), in this case I have chosen  30 degree. Now let us assume the triangle is Right triangle, then
              Sin A=perpendicular/ base       (since remember only one value let suppose angle A=30 )
              Sin 30=      ½ 
            Thus
            Perpendicular =1   , hypotenuse =2
              Since   triangle is right triangle thus
          (Perpendicular)2 + (base)2   =(hypotenuse)2
                    12                            +  (base)2   = 22
                                   Base= Sqrt(3)      [ here sqrt= square root]
  Thus we can conclude value of other value of “Sin A”.
Similarly we can conclude   other value of (cos A, tan A,   etc)   .
Elementary Trigonometric Identities:
1.                     (sin A) 2 + (cos A)2  = 1         OR          sin2 A  + cos2 A=1
2.                     (sec A)2 =  1 + (tan A)2              OR                     sec2 A=1+ tan2 A
3.                     (cosec A)2 = 1 +(cot A)2           OR                    cosec2 A=1+ cot 2A

Some Trigonometric Identities:
1.                     Sin(A+B) =  sin A * cos B  +  cos A * sin B
2.                     Sin(A-B) =  sin A * cos B   -   cos A * sin B
3.                     Cos(A+B) = cos A * cos B -  sin A* sin B
4.                     Cos(A-B) = cos A * cos B + sin A* sin B
5.                     Tan(A +B) = [tan A + tan B] / [1-tan A * tan B]
6.                     Tan(A -B) = [tan A - tan B] / [1 + tan A * tan B]
7.                     Cot(A+B) = [cot A * cot B  – 1 ]/[cot A + cot B]
8.                     Cot(A-B) = [cot A * cot B + 1 ]/[cot A -  cot B]

Some other:
1.                     2 sin A   sin B = cos(A-B) – cos( A+B)
2.                     2 cos A  cos B= cos(A+B) +  cos( A-B)
3.                     2 sin A  cos B=sin(A+B) + sin(A-B)
4.                     2 cos A  Sin B = sin(A+B) -  sin(A-B)
5.                     Sin C + sin D= 2  sin {(C+D)}    cos(C-D)
2                                      2   

6.                      Sin C - sin D= 2  cos {(C+D)}    sin(C-D)
                                         2                   2   
7.                     Cos  C + cos  D= 2  cos {(C+D)}    cos(C-D)
                                             2                   2   
8.                       Cos  C – cos  D= 2  cos {(C+D)}    sin(D-C)
                                              2                    2  
        Some other:
1.                     Sin   2A = 2 sin A  cos B
                =2 tan A      
                           1 + tan2 A

2.                      Cos 2A=  cos2 A  - sin2 A  = 2 cos2 A -1 = 1- 2 sin2 A
                =  1 -  tan2 A
                     1 + tan2 A

3.                     Tan 2A=  2 tan A
1-                     Tan2 A
              
4.                     Sin 3A= 3 sin A – 4 sin3 A
5.                     Cos 3A=4 cos3 A  - 3 cos A
6.                     Tan 3A= 3 tan A – tan3 A
1-                     3 tan2 A


Relationship between Radian and degree :
        Π radian  = 180° 
Relationship between length of arc (l), radius(r), central angle (A)
   If   there are 2 circle and central angle are formed at first and second circle are A1  ,A2   and , radius are r1 r1 ,    and length of arc l1 l2.
  Now            A1= l1/ r1      and    A2= l2/ r2      

Trick to find Relationship angle between hand of clock :
    11/2  * minute =30 *hour + angle
Min and Max range  Trigonometric function:
1.                     Sin A    [-1,1 ]
2.                     Cos A   [ -1,1  ]
3.                     Tan A   [ - ∞, + ∞  ]
4.                     Cosec A  [  - ∞,-1 ] U [1,]
5.                     Sec A      [  - ∞,-1 ] U [1,]
6.                     Cot A      [- ∞, + ∞  ]
Min and Max range  Trigonometric Equation :
1.              a sinɸ ± b cosɸ,       a sinɸ ± b sinɸ,       a cosɸ ± b cosɸ
Maximum value = √ (a
2 + b2)
Minimum value  = – √ (a
2 + b2)
2.              a sin2ɸ + b cosec2ɸ,       a cos2ɸ + b sec2ɸ,       a tan2ɸ + b cot2ɸ
Minimum value = 2√(ab)
The maximum value =
3.              a sin2ɸ + b cos2ɸ
If a > b, Maximum value = a and Minimum value = b
If a < b, Maximum value = b and Minimum value = a
4.              a sinɸ + b cosecɸ  ,  a cosɸ + b secɸ ,  a tanɸ + b cotɸ
 Minimum value = 2√(ab)
The maximum value =
5.                 a  secɸ + b cosecɸ 
Maximum value =[ √ (a  +√ (b ]2
Minimum value  = 

Shortcut  for solution of questions :
                                                                  
·                        If the question have equal sign (=) .i.e.   “LHS of equal side “  as   “RHS of equal side “ . Then in that case put ɸ value such that both hand side are equal, if so then put ɸ value in given equation.
·                        If the question have only equation then put ɸ value  in equation , also put  ɸ value    in the given equation to find the value and verify the vale from give  objective typo.



Height and distance
 In height and distance we will talk more about Right triangle .i.e. more question asked from Right triangle.

     Angle of elevation :
               

                         
                  The angle of elevation of an object as seen by an observer is the angle between the horizontal and the line from the object to the observer's eye (the line of sight).



Angle of depression :
                           
                                 
   
If the object is below the level of the observer, then the angle between the horizontal and the observer's line of sight is called the angle of depression.

  


                                          aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa


        


      RELATION BETWEEN TWO:




Some short trick:
·                        Ease way to solve the question is angle of elevation. Therefore if angle of elevation is given then ok ,go for that.
·                        If angle of depression is given assume it as angle of elevation  and make solution for that.
·                        When D and  D height of towers, and x is distance between then
                                       .x=√ (D1 .D2)
·                          if  ɸ1  and ɸ2    are two angle of elevation  from  same level and “ d ” is distance between them and “h “ is height then
                             .d=h(cot ɸ1 – cot  ɸ2 )
·                        if  ɸ1  and ɸ2    are two angle of elevation  from  different level and “ h ” is height  between them and “H “ is height from base to object that has to be seen   then
                            H=   h cot ɸ1
                                 cot ɸ1 – cot  ɸ2


                               

     


No comments:

Post a Comment